
Zerodha Error:

ZERODHA_SOCKET_ERROR {

 userId: 'f295974c-14b6-4fe0-8799-56f769110c6d',

 message: ErrorEvent {

 target: WebSocket {

 _events: [Object: null prototype],

 _eventsCount: 4,

 _maxListeners: undefined,

 readyState: 2,

 protocol: '',

 _binaryType: 'arraybuffer',

 _closeFrameReceived: false,

 _closeFrameSent: false,

 _closeMessage: '',

 _closeTimer: null,

 _closeCode: 1006,

 _extensions: {},

 _receiver: null,

 _sender: null,

 _socket: null,

 _isServer: false,

 _redirects: 0,

 url: 'wss://ws.kite.trade/?api_key=...&access_token=...&uid=1767337640990',

 _req: [ClientRequest],

 [Symbol(shapeMode)]: false,

 [Symbol(kCapture)]: false

 },

 type: 'error',

 message: 'Unexpected server response: 403',

 error: Error: Unexpected server response: 403

 at ClientRequest.<anonymous>

(C:\Users\ADMIN\OneDrive\Documents\Files\VisionX\BullTrek\node_modules\kiteconnect\n

ode_modules\ws\lib\websocket.js:595:7)

 at ClientRequest.emit (node:events:519:28)

 at ClientRequest.emit (node:domain:489:12)

 at HTTPParser.parserOnIncomingClient [as onIncoming] (node:_http_client:716:27)

 at HTTPParser.parserOnHeadersComplete (node:_http_common:117:17)

 at TLSSocket.socketOnData (node:_http_client:558:22)

 at TLSSocket.emit (node:events:519:28)

 at TLSSocket.emit (node:domain:489:12)

 at addChunk (node:internal/streams/readable:561:12)

 at readableAddChunkPushByteMode (node:internal/streams/readable:512:3)

 }

}

Code:

import { KiteTicker } from "kiteconnect";

import { StocksExchange } from "@prisma/client";

import {

 handleZerodhaOrderUpdate,

 handleZerodhaTradeUpdate,

} from "../../../services/stocks/exchangeSocketServices/zerodhaSocketService";

import { logEvent } from "../../utils";

import { SocketManager } from "../../socketManagement";

type ZerodhaCredentials = {

 apiKey: string;

 accessToken: string;

};

export const ZerodhaOrderHandler = {

 connect(userId: string, credentials: ZerodhaCredentials): any {

 const { apiKey, accessToken } = credentials;

 const ticker = new KiteTicker({

 api_key: apiKey,

 access_token: accessToken,

 });

 ticker.on("connect", () => {

 logEvent("CONNECTED", {

 userId,

 exchange: StocksExchange.ZERODHA,

 market: "ORDERS",

 });

 });

 ticker.on("order_update", (order) => {

 console.log("ZERODHA_ORDER_UPDATE", { userId, order });

 handleZerodhaOrderUpdate(order, userId);

 });

 // ticker.on("trade", (trade) => {

 // console.log("ZERODHA_TRADE_UPDATE", { userId, trade });

 // handleZerodhaTradeUpdate(trade, userId);

 // });

 ticker.on("reconnect", (attempt, delay) => {

 console.log("ZERODHA_RECONNECTING", { userId, attempt, delay });

 });

 ticker.on("noreconnect", () => {

 console.log("ZERODHA_NO_RECONNECT", { userId });

 SocketManager.removeSocket(userId, StocksExchange.ZERODHA, "ORDERS");

 });

 ticker.on("disconnect", () => {

 console.log("ZERODHA_DISCONNECTED", { userId });

 });

 ticker.on("error", (err) => {

 console.log("ZERODHA_SOCKET_ERROR", {

 userId,

 message: err?.message || err,

 });

 });

 ticker.on("close", () => {

 logEvent("CLOSED", {

 userId,

 exchange: StocksExchange.ZERODHA,

 market: "ORDERS",

 });

 });

 ticker.connect();

 SocketManager.registerSocket(

 userId,

 StocksExchange.ZERODHA,

 "ORDERS",

 ticker,

 "stock"

);

 return ticker;

 },

};

