
“You can add it to the Ticker class and use it as the last resort.
But if it is a normal connection close make sure you close it without Abort

because this will inform our servers that it is intentional.
 Otherwise, it might count that your connection is still alive

 and next time you might get rate limited

for opening more connections”

Couldn't get this part

If you are suggesting using/calling
 dispose on Ticker instance

Then it does not have Dispose
 method to call.

There is a Dispose
method on _ws.

/// <summary>
/// A wrapper for .Net's ClientWebSocket with callbacks
/// </summary>
internal class WebSocket
{
 // Instance of built in ClientWebSocket
 ClientWebSocket _ws;

// Instance of WebSocket class that wraps .Net version
 private WebSocket _ws;

// Instance of built in ClientWebSocket
 ClientWebSocket _ws;

Ti
ck
er
.c
s

We
bS
oc
ke
t.
cs

If you are suggesting to close
 Ticker when error happens no I don't do

 that I let Kite handle it to Reconnect
or otherwise

Which is private and
not exposed through

Ticker instance.

“Also, have you tried disposing
of the ticker instance

 only when this error happens?”

That is scary now!!.
 /// <summary>
 /// Reconnect WebSocket connection in case of failures
 /// </summary>
 private void Reconnect()
 {
 if (IsConnected)
 _ws.Close(true);

 if (_retryCount > _retries)
 {
 _ws.Close(true);
 DisableReconnect();
 OnNoReconnect?.Invoke();
 }
 else
 {
 OnReconnect?.Invoke();
 _retryCount += 1;
 _ws.Close(true);
 Connect();
 _timerTick = (int)Math.Min(Math.Pow(2, _retryCount) * _interval, 60);
 if (_debug) Console.WriteLine("New interval " + _timerTick);
 _timer.Start();
 }
 }

You are yourself calling
_ws.Close(true)

/// <summary>
/// Start a WebSocket connection
/// </summary>
public void Connect()
{
 _timerTick = _interval;
 _timer.Start();
 if (!IsConnected)
 {
 _ws.Connect(new Dictionary<string, string>() { ["X-Kite-Version"] = "3" });
 }
}

What this means is connection if connected would
 be aborted anyway on reconnect. And your server
has no way of knowing if it was intended or not and

 Connect() any way creates a brand-new ClientWebSocket.
So is it a graceful close or abrupt Abort does not matter

at this point.

/// <summary>
/// Connect to WebSocket
/// </summary>
public void Connect(Dictionary<string, string> headers = null)
{
 try
 {
 // Initialize ClientWebSocket instance and connect with Url
 _ws = new ClientWebSocket();

WebSocket.cs

Ticker.cs

Ti
ck
er
.c
s

I think it is not the right approach. Because it is
 only good until it is good and if something

goes wrong then it is pure luck if we get
rate limited or not!. I think until it is figured out.

I might use the approach below.

WebSocket.cs

/// <summary>
/// Tries to close WebSocket connection. Default timeout is
/// 1 Minute or 60,000 milliseconds.
/// </summary>
public bool TryClose(double wait_period = 60,000)
{

 if(_ws.State == WebSocketState.Open)
 {
 try
 {

 _ws.CloseAsync(WebSocketCloseStatus.NormalClosure, "", CancellationToken.None).Wait(TimeSpan.FromMilliseconds(wait_period));

 }
 catch (Exception e)
 {
 OnError?.Invoke("Error while trying to close connection. Message: " + e.Message);
 }
 }

 return IsConnected() ;
}

WebSocket.cs

And then
if (TryClose() == false) Close (Abort: true) ;

Thanks
Regards.

Thanks a bunch for the reply Tony

	Slide 1

